Projets 2015-2016 de 5e année du cursus d’élève ingénieur de l’ESILV, promo 2016. Le projet d’innovation industrielle en 5e année permet à l’élève-ingénieur de mettre en oeuvre ses compétences d’ingénieur et de management de projet.
Tout au long du cursus, sur des thématiques proposées par les entreprises partenaires de l’école, les étudiants élaborent en petits groupes des projets sur la base de problématiques concrètes. Le projet d’Innovation Industrielle de 5e année doit permettre à l’élève de valoriser son travail vers l’extérieur et augmenter sa visibilité auprès des entreprises. Quelques exemples de projets autour du big data, data science, deep learning …
ARPT Patrimondi – Application Android & WebApp UNESCO
Joshua BARETTE (chef de projet) – Anir BEN CHABANE – Steeven LY
Ce projet s’inscrit dans le contexte d’un projet plus large traitant des enjeux de la « patrimonialisation » ou de l’observation de comment se construit le patrimoine culturel global dans le cadre de la mondialisation.
L’objectif de notre projet est de permettre un ou plusieurs moyens de visualiser et d’interpréter les flux touristiques au sein de et entre 5 sites du patrimoine mondial de l’UNESCO que sont : Les temple d’Angkor au Cambodge, La médina de Marrakech, Le Vieux-Québec, les concessions internationales de Tianjin en Chine, ainsi que la culture du Tango.
Les données Big Data sont issues de traces numériques laissées sur les réseaux sociaux comme Instagram, Flickr, TripAdvisor, Panoramio et Hotel.com. Ces données comprennent notamment des informations sur les lieux visités, des coordonnées GPS, des photographies, des tags attachés aux photos des informations sur les utilisateurs et éventuellement des notes laissées sur des hôtels/restaurants/lieux touristiques.
Précrime – Analyse des données criminologiques de San Francisco
David DUPUIS (chef de projet) – Pierre COMALADA – Jérémie CHEVALLIER – Nicolas BONICHON
Le but du projet est de prédire la catégorie des délits qui auront lieu à un certain moment et dans un certain lieu à San Francisco. Ce projet est réalisé dans le cadre d’un concours de Data Science organisé par la plateforme Kaggle.
En effet Kaggle, organise des concours Internationaux sur le thème de la Data Science. Ce concours prend place de juin 2015 à juin 2016. Plus de 936 équipes et 1209 candidats participent à ce concours international à but éducatifs pour les curieux de la data science.
Pour participer à ce concours « Classification des Crimes à San Francisco », il nous a été nécessaire de générer des modèles de prédiction basé sur les différents types de délits, en utilisant des algorithmes de Machine Learning et plus particulièrement grâce au Deep Learning.
SmartCube – Données des transports communs parisiens en temps réel
Arthur ELIE (chef de projet) – Alan CHAN – Bruno LUCAS
Le projet SmartCube a pour objectif de proposer une plateforme permettant la gestion et la mise en relation d’objets domotiques. La plateforme Jeedom est un logiciel open source qui facilite grandement cette gestion. Grâce à sa flexibilité et aux nombreux paramètres de personnalisation, chaque utilisateur peut créer sa propre domotique Jeedom.
Notre projet SmartCube se place donc dans la continuité de ce projet déjà bien abouti, et consiste à offrir aux utilisateurs de Jeedom une nouvelle fonctionnalité « RATP » permettant de récupérer les données des transports en communs parisiens en temps réel et permettre de faire interagir ces données avec leurs objets domotique tel qu’un réveil.
Par exemple, l’utilisateur peut ainsi décider de faire sonner son réveil 30 minutes plus tôt en cas de perturbation sur la ligne. Ce projet vise également à mettre en lumière la plateforme domotique Jeedom qui propose une architecture très intéressante et invite élèves et développeurs du dimanche à s’y intéresser de plus prêt.
Grand Paris – Application Web de visualisation du métro parisien
Nicolas YUE (chef de projet) – Ilan BENSOUSSAN – Jing LI – Liuyi LI
Le Grand Paris est un projet de grande envergure, qui prendra place entre 2018 et 2030. L’intérêt principal du Grand Paris est d’améliorer le système de transport en commun parisien en apportant, par exemple, la création de 4 nouvelles lignes de Métro.
Notre projet est une Application Web permettant une visualisation de données sur le comportement touristique au sein du réseau de transport parisien (focus sur le Métro). Pour cela, nous avons eu recours à une quantité massive de données provenant de sites de réseaux touristiques tels que Tripadvisor ou Panoramio, représentant des photos prises par des touristes…
En analysant et visualisant les données proches des stations de Métro dans une approche Data Science, l’équipe a réussi à déterminer le comportement touristique dans Paris en fonction de différents facteurs comme la date et les saisons, la nationalité, le sexe et l’age. L’application permet aussi la visualisation des données sur les nouvelles lignes de Métro (15 à 18).